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Abstract

We use the support-operator method to derive new discrete approximations of the divergence, gradient, and
curl using discrete analogs of the integral identities satisfied by the differential operators. These new discrete op-
erators are adjoint to the previously derived natural discrete operators defined using ‘natural’ coordinate-invariant
definitions, such as Gauss’ theorem for the divergence. The natural operators cannot be combined to construct
discrete analogs of the second-order operators div grad, graddiv, and curlcurl because of incompatibilities
in domains and in the ranges of values for the operators. The same is true for the adjoint operators. However,
the adjoint operators have complementary domains and ranges of values and the combined set of natural and
adjoint operators allow a consistent formulation for all the compound discrete operators. We also prove that the
operators satisfy discrete analogs of the major theorems of vector analysis relating the differential operators,

— — — — —
including div A = 0 if and only if A = curl B; curl A = 0 if and only if A = grad . © 1997 Elsevier
Science B.V.
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1. Introduction

Discrete models that preserve the fundamental properties of their original continuum model for
the underlying physical problem can be derived based on solid mathematical theory. These properties
include conservation laws, symmetries in the solution, and the nondivergence of particular vector fields
(i.e., they are divergence free).

We have developed a discrete analog of vector and tensor calculus that can be used to accurately
approximate continuum models for a wide range of physical processes. This is the second in a series
of papers that create the discrete analog of vector analysis on logically rectangular, nonorthogonal,
nonsmooth grids.
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In the first paper [6], we introduced the natural spaces of discrete scalar and vector functions.
Discrete analogs of the divergence, gradient, and curl were constructed based on coordinate-invariant
definitions. Discrete analogs of line, surface, and volume integrals were described. The first paper
included proofs of the discrete theorems of vector analysis including Gauss’ theorem; the theorem that

— — — — —
div A = 0 if and only if A = curl B; curl A = 0 if and only if A = grad ¢; the theorem that

if 4 = grad o, then the line integral does not depend on the path; and the theorem that if the line
integral of a vector function is equal to zero for any closed path, then this vector is the gradient of a
scalar function. We also introduced the primitive forward and backward difference operators and the
primitive metric operators (related to multiplications of discrete functions by the lengths of edges, the
areas of surfaces, and the volumes of 3-D cells).

The domains and ranges of the natural discrete operators defined in [6] arise “naturally” from
discrete analogs of Stokes’ theorem. To form second-order nontrivial combinations of these operators,
which are discrete analogs of div grad, grad div, and curl curl, the range of the first operator must be
equal to the domain of the second operator. The domains and ranges of the natural operators alone are
not sufficient to form these compound operators. By constructing the adjoints to the natural discrete
operators, we create additional discrete first-order operators with complementary domains and ranges.
This extended set of discrete operators allows all possible combinations of the first-order operators to
be formed in a consistent way. Furthermore, the new operators are defined to be compatible with their
original discrete operators, so that discrete versions of the integral identities between the gradient,
divergence, and curl are satisfied by construction.

We use the support-operator method (SOM) [14-16,18] to construct discrete operators with com-
patible domains and ranges on the basis of discrete analogs of the integral identities:

/udivadV+/(W,gradu) dv = fu(W,‘ﬁ) ds, (L.1)
v \4 1%

/(Z,curl“é’) v — / (B,curl A)dV = 7( (7, 4 x B)ds, (1.2)
\% |4 )%

where u is an arbitrary scalar function, W, A and B are arbitrary vector functions defined on domain
V with boundary 3V, and 7 is the unit outward normal to V. In the simplest case, when boundary
integrals vanish, the above identities imply that div = —grad* and curl = curl*, if we define inner
products in spaces of scalar and vector functions as

(u,v) g = fuv dV and (4,B), = / (4, B)av.
v v
The SOM uses the discrete versions of integral identities as the basis to construct discrete operators

with compatible domains and ranges. In [6], the natural discrete divergence was defined as a discrete
operator with domain HS and range HC,

DIV:HS — HC,
where HS is the space of discrete vector functions defined by their orthogonal projections onto

directions perpendicular to face of the cell, and HC is the space of discrete scalar functions given by
their values in the cell (see [6] for details).
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Following the SOM approach, to construct a new discrete gradient
GRAD:HC — HS,

we use the discrete analog of the identity (1.1) and operator DIV as the prime operator. The discrete
gradient, derived operator, by construction is negative adjoint to DIV:

GRAD = -DIV*. (1.3)

We indicate derived adjoint operators by the over-bar.
The natural discrete gradient GRAD was defined as a discrete operator with domain HN and
range HL,
GRAD:HN — HL,
where HL is the space of discrete vector functions defined by their orthogonal projections onto
directions of the edges of the cell, and HN is the space of discrete scalar functions given by their
values in the nodes (see [6] for details).

To construct a new discrete divergence, we again use the discrete analog of the identity (1.1), but
in this case GRAD is used as the prime operator; then

DIV:HL — HN
and

DIV = —GRAD". (1.4)
In a similar way, the natural CURL:HL — HS is used to construct another discrete curl,
CURL:HS — HL, and

CURL = CURL". (1.5)

We then prove that these adjoint operators satisfy the same discrete theorems of vector analysis as

natural operators [6]. The proofs are reduced to theorems for simple differences by representing the

derived adjoint operators in terms of primitive difference operators and metric operators.
Natural operators can be combined to construct only the trivial operators:

DIVCURL: HL — HC, DIV CURL = 0, (1.6)
CURL GRAD:HN — HS, CURL GRAD = 0. (1.7)
We cannot apply DIV to GRAD because the range of values for GRAD does not coincide with the
domain of operator DIV, and so on.
Adjoint operators can also be combined to construct the trivial operators:
DIV CURL:'HS — HN, DIVCURL = 0, (1.8)
CURL GRAD:HC — HL, CURL GRAD = 0. 1.9)

Natural operators and adjoints to them can be combined to form the nontrivial second-order opera-
tors:

DIV GRAD: HC — HC, DIV GRAD : HN — HN, (1.10)
CURL CURL: HS — HS, CURL CURL : HL — HL, (1.11)
GRADDIV:HL — HL, GRADDIV:HS — HS. (1.12)
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Fig. 1. On a logically rectangular grid, the scalar function values can be either cell-centered (HC), as in (a), or defined at
the nodes (HN), as in (b).

Using constructed first- and second-order discrete operators we can construct mimetic finite-
difference methods for most of the partial differential equations arising in mathematical physics
[1-5,8,9,17,18]. The resulting formulas for all first-order discrete operators on tensor product, rectan-
gular grids are listed in Appendix A.

2. Grids and discrete functions
2.1. Grid

We index the nodes of a logically rectangular grid using (7, 5), where ] < i < M and 1 < j < N
(see Fig. 1). The quadrilateral defined by the nodes (i,5), (¢ +1,7), (i+ 1,7+ 1) and (¢,5 + 1) is
called the (i + 1/2,7 + 1/2) cell (see Fig. 2(a)). The area of the (i + 1/2,j + 1/2) cell is denoted
by VCii1/2,j+1/2, the length of the side that connects the vertices (i,j) and (4,7 + 1) is denoted
S&; j+1/2- and the length of the side that connects the vertices (¢, j) and (i+ 1, j) is denoted S7;1 /2 ;-

The angle between any two adjacent sides of cell (i + 1/2, j + 1/2) that meet at node (k, ) is denoted
i+1/2,j+1/2
k.l :
When we determine discrete differential operators, such as CURL, it is useful to consider a 2-D grid

as a projection of a 3-D grid. This approach makes it is easier to later generalize finite-difference
method to three dimensions and simplifies the notation. In this paper we consider functions of the
coordinates x and y and extend the grid into a third dimension, z, when convenient. The extended
3-D mesh is constructed by extending a grid line of unit length into the z direction to form a prism
with unit height and with a 2-D quadrilateral cell as its base (see Fig. 2(b)).

Sometimes it is useful to interpret the grid as being formed by intersections of broken lines that
approximate the coordinate curves of some underlying curvilinear coordinate system (£, 1, {). The
£ coordinate corresponds to the grid line where the index ¢ is changing, the 1 coordinate corresponds
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Fig. 2. (a) The (i + 1/2,7 + 1/2) cell in a logically rectangular grid has area VCjyi/2 ;11,2 and sides S5& i1/,

Sﬂi+|/2,j, S£i+1,j+|/2 and S’I’]id‘_]/gyj+|. The interior angle between Sni+|/2.j and S£i+1’j+|/2 is @:i:,/jz‘j+]/2. (b) The

2-D (i +1/2,5 + 1/2) cell (z = 0) is interpreted as the base of a 3-D logically cuboid (z + 1/2,7 + 1/2,k + 1/2) cell
(a prism) with unit height.

¢ bik+1

Lj+lk

i+1,jk

Fig. 3. The (£, 7, () curvilinear coordinate system is approximated by the i, j and k piecewise linear grid lines.

to the grid line where the index j is changing, and the ¢ coordinate corresponds to the grid line where
the index £ is changing (i.e., height of the prism; see Fig. 3).

We denote the length of the edge (4,7, k) — (i+1, j, k) by I&;12 j . the length of the edge (i, j, k) —
(4,541, k) by In; j 412k and the length of the edge (i, 7, k) — (2, j, k+1) by I(; ; x11/2 (Which we have
chosen to be equal to 1). The area of the surface (¢,7, k)~ (i,j+ 1,k) — (4,5, k+1)— (3,7 + 1, k+1)
is denoted by S&; j11/2 k+1/2 because it is the analog of the element of the coordinate surface dS¢.
Similarly, the area of surface (¢,5,k) — (¢ + 1,4,k) — (4,5, k + 1) — (¢ + 1,4,k + 1) is denoted by
STi+1/2,jk+1/2- We use the notation S, 1/2 ;4124 for the area of the 2-D cell (i + 1/2,j +1/2),
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that is, SC; 172 j41/26 = VCiy1/2,j+1/2- Because the artificially constructed 3-D cell is a right prism
with unit height, we have

S&ijr1/2k+172 = Wijr1/2k - 1 i ht172 = 05 j41/2k (2.1)
and

SMivr/25k+1/2 = Eiv12,5% UG kr172 = i1 /2,5 k- (2.2)
With this 3-D interpretation, the 2-D notations S&; ;. 1/> and S7,,/, ; are not ambiguous because
the 3-D surface (3, j,k), (4,5 +1,k), (i,5,k+1), (4,5 + 1,k + 1) corresponds to an element of the
coordinate surface S¢; and, since the prism has unit height, the length of the side (7,j) — (¢,5+ 1) is
equal to the area of the element of this coordinate surface.

2.2. Discrete scalar functions

In a cell-centered discretization, the discrete scalar function U, /3412 is defined in the space
HC and is given by its values in the cells (see Fig. 1(a)), except at the boundary cells. The treatment
of the boundary conditions requires introducing scalar function values at the centers of the boundary
segments: Uy i11/2), Unrjyiy2), where j = 1,...,N — 1, and Ugi11/2,0), Ugig1/2,8), Where @ =
1,...,M — 1. In three dimensions, the cell-centered scalar functions are defined in the centers of the
3-D prisms, except in the boundary cells where they are defined on the boundary faces. The 2-D case
can be considered a projection of these values onto the 2-D cells and midpoints of the boundary
segments.

In a nodal discretization, the discrete scalar function Uj ; is defined in the space HN and is given by
its values in the nodes (see Fig. 1(b)). The indices vary in the same range as for coordinates x; ;, v; ;.

2.3. Discrete vector functions

We assume that vectors may have three components, but in our 2-D analysis, the components
depend on only two spatial coordinates,  and y. We consider two different spaces of discrete vector
functions for our 3-D coordinate system. The HS space (see Fig. 4(a)), where the vector components
are defined perpendicular to the cell faces, is the natural space when the approximations are based on
Gauss’ divergence theorem. The HL space (see Fig. 5(a)), where the vectors are defined tangential to
the cell edges, is natural for approximations based on Stokes’ circulation theorem.

The projection of the 3-D HS vector discretization space into two dimensions results in the vectors
being defined perpendicular to the quadrilateral cell sides and in a vertical vector in the cell center
(see Fig. 4(b)). We use the notation

WS;jty: i=1,...,M; j=1,...,N -1

for the vector component at the center of face S&; ;1/2) (side I ;j11/2)); the notation
WSnGrp5: i=1,...,M—1, j=1,...,N

for the vector component at the center of face Sn(;11/2, ) (side ;11,2 ;)); and the notation
WSCit125+172: t=1,.... M =1 j=1,...,N—1

for the component at the center of face S{;11/2,j41/2) (2-D cell Viyq/2541/2)-
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Fig. 4. (a) HS discretization of a vector in three dimensions. (b) 2-D interpretation of the HS discretization of a vector.
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Fig. 5. (a) HL discretization of a vector in three dimensions. (b) 2-D interpretation of the H £ discretization of a vector.

The projection of the 3-D H.L vector discretization space into two dimensions results in the vectors
being defined as tangential to the quadrilateral cell sides and in a vertical vector at the nodes (see
Fig. 5(b)). We use the notation

WLE(H—]/Z,_}) 1= 1,,]\/1"-'1, ]—"—'— 1,,N
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for the component at the center of edge I§(;11/2,5) (in 2-D, the same position as for W.S7,11/2 ;));
the notation

WLn(i,j—H/Z): 1= 1,...,M; _]: 1,...,N—1

for the component at the center of edge I7; ;1 1/2) (in 2-D, the same position as for WSE; ;11/2));
and the notation

WL i=1,...,M; j=1,...,N

for the component at the center of edge I((; ;) (in 2-D the position that corresponds to node (3, 5)).
From here on, there will not be any dependence on the k index, and it is dropped from the notations.

3. Support-operator method

We use the SOM [16] to derive operators DIV, GRAD and CURL from discrete analogs of the
integral identities (1.1) and (1.2). These identities connect the differential operators div, grad and curl
and allow us to obtain their discrete analogs with consistent domains and ranges of values.

In the SOM, first a discrete approximation is defined for a first-order differential operator, such
as the divergence or gradient, that satisfies the appropriate discrete analog of an integral identity,
such as Stokes’ theorem. This initial discrete operator, called the prime operator, then supports the
construction of other discrete operators, using discrete formulations of the integral identities (1.1)
or (1.2). For example, if the initial discretization is defined for the divergence (prime operator), it
should satisfy a discrete form of Gauss’ theorem. This prime discrete divergence, DIV is then used to
support the derived discrete operator GRAD satisfying a discrete version of the integral identity (1.1).
The derived operator GRAD would then also be the negative adjoint of DIV.

We first consider identity (1.1) and introduce the space of scalar functions H with the inner product:

(u,v)H=/uvdV+%uvdS, u,v € H. 3.1
1% (1%

- - = -
We also introduce the space of vector functions H so that if two vector functions A, B € H, their
inner product is defined as

— — —_—
(A,B)H:/(A,B)dV. 3.2)
v
To extend the operator div to the boundary, we define the extended divergence operator
d-H->H
as

divw, (z,9)eV,
dw =17 ' , (3.3)
v {—@7,7?), (z,y) € OV

Identity (1.1) can be used to prove
d = —grad*; 3.4
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namely,

(AW, u)y = /udivﬂ?dV - ]{u(_u_f, 7)dS = — /(W, gradu)dV = (w, —gradu)g. (3.5)
14 ov

We will establish a similar relationship for operator curl when we consider construction of opera-
tor CURL.

4. Derived adjoint operators
4.1. Operator GRAD

To derive the discrete operator
GRAD:HC — HS, 4.1)

we must first define the inner products in spaces HC and HS and extend the operator DIV to the
boundary.

4.1.1. Extension of operator DIV to the boundary: operator D
To determine the discrete analog of operator d, we note that in the interior of the region, the prime
operator D, which is the analog of the divergence, is given in [6] as

—
(D W) (1+1/2,5+1/2)
—
= (DIV W)(i+1/2,j+1/2)
= {(WSE(t1,j+1/2) S&i+1,5+1/2) — WSEGi j172) SEg+172))
+ (WS 12,5410 6+1/2,5+1) — WSNG11/2,5)5M61/20)) }/V Clivry2,54172)- “4.2)

On the boundary, where, in correspondence with Definition 3.3, the operator d gives the normal
component of the vector, we define the operator D as

(D W_})(m/z,l) = —WSnGt1/2,1)> i=1,...,M—1,
(D W)(iﬂ/z,N) = +WSnut12n) t=1...,M—1,
(D W)(1,j+1/2) = -WS&q1,j+1/2) j=1,...,N—-1,
(D W)(M,j+1/2) =+WS¢m 412 J=1,....,N—-L

If we introduce generalized operators of central differencing as

(4.3)

(6e0)a,8 = Uat1/2,8 — Ua—1/2,85 (650)a,8 = Ungi1/2 — Uap—1/2, 4.4)
where « and 3 can be integer or half indices, then Eq. (4.2) can be presented in compact form

—- e d
(D W) (i+1/2,j+1/2) — (DIV W) (i+1/2,j+1/2)

_ [6(WS¢ SO i+1/2.5+1/2) + (W SN SN)|(i+1/2,5+1/2) @5)
VCiit1/2,j+1/2)
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Fig. 6. The grid lines (£, 7) form a local nonorthogonal coordinate system with unit vectors E, —l;; and corresponding unit

normals to these directions, m and n_Sv; In this basis, the components (W LE, W Ln) of vector W are the orthogonal
projections onto grid lines, and components (WS¢, W .Sn) are orthogonal projections to normal directions,

4.1.2. Spaces of discrete functions
In the space of discrete scalar functions, HC, (functions defined in the cell centers), the natural
inner product corresponding to the continuous inner product (3.1) is

M—-1 N-1
U V=Y O Uirijaj+1/2) Visryzg4172) VCit1/2,54+1/2)
i=1 j=1
M-1 N-1

+ Z Utir1/2,) V172,094 1/2,1) + Z Untjr1 Vi j+1/258,5+1/2)
P =1
M~-1 N-1
+ 3 Ui o Visram S n + 3 Uninm Vit Séasg.  (46)

i=] 7=1

In the space of vector functions ‘HS, the natural inner product corresponding to the continuous
inner product (3.2) is

M-1 N-1

— —> - = —
(A7 B)Hs = Z Z (Av B)(i—+—1/2,j+1/2)Vc(i+l/277+1/2)’ 4.7
i=1 j=1

where (X, _5) is the dot product of two vectors. Next, we define this dot product in terms of the
components of the vectors perpendicular to the cell sides (see Fig. 6). Suppose that the axes £ and n
form a nonorthogonal basis and that ¢ is the angle between these axes. If the unit normals to the axes

— —_— = . . - . -
are nS¢ and n.S7, then the components of the vector W in this basis are the orthogonal projections
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WS¢ and W Sy of W onto the normal vectors (see the discussion in [10, Chapter 2] for more details).
The expression for the dot product of A= (AS¢, ASn) and B = (BS¢, BSn), is

(71: §) _ ASE BSE + ASn BSn + (.A2,S'§ BSn+ ASn BS¢) cos v @38)
sin®
From this expression, the dot product in the cell is approximated by
| yt1/2,5+1/2)
— Z (i+kg+1)
+1/2,541/2) . i+1/2,5+1/2
(+1/2,5+1/ G sin? SOEH—k{szl) /2)

(4,B)

X [ASE(itkj+1/2) BSEirkj1/2) + ASNGir1/2,441) BSN(ir1/2,5+0
+ (=1 (ASEn j1/2) BSTG41 200

i+1/2,5+1/2
+ ASNG11/2,j4+1 BSE(i+kj+1/2))c0s @Eiik{ e 2, 4.9)
where V(sfk] §2+Jl)+ ' are some weights that satisfy
1
(6+1/2,5+1/2) (i+1/2,5+1/2) _
Greath 200 D Vi =L 4.10)

k=0

In this formula, each index (%, ) corresponds to one of the vertices of the (i + 1/2,j + 1/2) cell, and
notations for weights are the same as for angles of cell.

When computing the adjoint relationships between the discrete operators, it is helpful to introduce
the formal inner products, (to denote which we will use square brackets |-, -]), in the spaces of scalar
and vector functions. In HC, the formal inner product is

M—1 N-1 M-1
[U,V]ac = Z Z Ui+1/2,+1/2Viit1/2,5+1/2) + Z Utiv1/2,)Viir1/2,1)
=1 j=1 i=1
N-1 M-1
+ Z Ut j+12Vin,j+1/2) + Z Uli+1/2,8) Vii+1/2,N)
=1 i=1
N-1
+ 3 Ugai Vi @11
i=1
in HS, the formal inner product is
M N-1 M-1 N

(A, B 5= DD ASEai ) BSE iy + D Y ASNGr2 ) BSGsj2g).  (412)

i=1 j=1 i=1 j=1
The natural and formal inner products satisfy the relationships
— — — —
(U,V)ac = [CU,V]ac and (A4, B)HS = [SA, B]HS, . (4.13)
where C and S are symmetric positive operators in the formal inner products. For operator C we have
[CU,V]ac = [U,CV]ac and [CU,Ulxc > 0. 4.14)
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A comparison of the natural and formal inner products gives

(CU)(i+l/2,j+l/2) = Vc(i+l/2,j+1/2)U(i+1/2,j+l/2)s 1= 1,. ey M — 1, ] = 1, e ,N - 1,

(CU)ij+1/2) = S€ij+1/29UG5+1/2)5 i=1,M;j=1,...,N—1,
(CU)ix1/25) = Sar12.)Uli+1/2,5) t=1,....M—1;, j=1,N.

The operator S can be written in block form:

ST — Sn S AS¢E B S11 ASE + S12 ASn
S S» ASn Sy ASE+ Sy AS??
This operator is symmetric and positive in the formal inner product:

— — —_ = —_ —>
[SA4, B, s=[A.5B),s [SA,A],s>0.

By comparing the formal and natural inner products,

— — —
(A,B)HS:[SA B]HS
M N-1
=3 [(S11 ASE) (s j11/2) + (S1245m) i j+1/2) | BSE (i j4172)
=1 j=1

N
+ D [(S214S€)ih1/25) + (S2ASD) i41/2,5)| BSNGi4172,5)

T
.
£

we can derive the formulas for operator S:

L yliok2a+172)

(6,3+1)
(SuASE) i j+1/2) = (Z — (i‘k/z,j+1/2))ASf(i,j+l/2)a
k=0 ST Py j40)

(i—k/2,5+1/2)

1
(SaASise = 2 (-1 sin2 Qi —F723+1/2) ©0% Plig ) ASN k2540,
k,l=0 Plij+1)

(i+1/2,5-k/2)

1
(521A8€) (i41/2.9) = ;L (=D i TR € Pl ASEGrii-k/2)
=0 (i+1,3)

Ly ll2d-k/2)

(+4,4)
(S2ASN)i+1/2,5) = ( > 2 (i+1/2,j—k/2)>ASn('i—H/Z,J')’
k1=0 81" P 5)

(4.16)

4.17)

(4.18)

4.19)
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ij+l

i+lj

Stencil for operator S 12 Stencil for operator § 21

Fig. 7. The stencils of the components 5|2 and Sy; of the symmetric positive operator S that connects the natural and formal
inner products (X,?)Hg = [SX, E)]Hs.

These formulas are valid only for sides of the grid cells interior to the domain; however, they can
be extended to the boundary sides if the grid and discrete functions are first extended to a row of
points outside the domain by using the appropriate boundary conditions. The operators S1; and Sy
are diagonal, and the stencils for the operators Sj> and S,; are shown in Fig. 7.

4.1.3. Construction of operator GRAD
The derived gradient operator is defined by GRAD &f —D*, where the adjoint is taken in the

natural inner products (from here on, we will use notation &ef , when we define a new object). Recall
that D: HS — HC. The definition of the adjoint gives

— —

(DW,U) e = (W,D'U), s, (4.20)
which can be translated to the formal inner products as

[DW,CU) e = [W,SDU], 6. 4.21)
The formal adjoint D' of D is defined to be the adjoint in the formal inner product,

— —

(W, DicU], o = [W,SD*U], . 4.22)

This relationship must be true for all W and U, so DIC = SD* or D* = S~IDIC , and the discrete
analog of operator grad is given by

GRAD = -D* = —-S~!DiC. (4.23)

Therefore for a general nonorthogonal, logically rectangular grid, it is not possible to write explicit
formulas for the components of the operator GRAD because the operator S is banded and consequently
S~ is full, that is, GRAD has a nonlocal stencil.

The discrete flux, '

.
W = —GRADU = S§~'Dfcu,

is obtained by solving the banded linear system (recall that C, S and D are local operators)

SW = Dbicu, (4.24)
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where the right-hand side is defined by DC, which is

S&ij+172(0¢ Ui jyr2 29

SNit172,5 (05 U)igr /2,5

Similar systems arise in defining the flux in finite element methods, HODIE (High Order Differences
with Identity Expansion) methods [13], and other compact finite-difference schemes [11,12]. The
discrete operator S is symmetric positive definite, which matrix has five nonzero elements in each
row (see Eq. (4.20) and Fig. 7).

4.2. Operator DIV

The operator DIV is defined as the negative adjoint to the natural operator GRAD. The div and
grad satisfy the integral identity (1.1):

— — —
/ (W, grad ) dv = — / wdiv i dV + ]{ (W, 7) 5. 4.26)
14 1%

0
In the subspace of scalar functions, H, where u(z,y) =0, (z,y) € 9V, the boundary term is zero,
and therefore

fove 4 —_—
/ (W,gradu)dV = — / udivW dv, 4.27)
v |4

(use of the notation of *“zero” above the name of the space indicates that values of corresponding
functions are equal to zero on the boundary). That is, in this subspace div is the negative adjoint of
grad in the sense of

(u,v);}:[uvdV and (K,?)H:/(X,ﬁ) dv. (4.28)
v v

0
To mimic the continuous case, we define the space of discrete scalar functions HN as

0
HN & {U € HN, U;; = 0 on the boundary}

with the inner product defined as

M—-1 N-1
def
(U,V)H?N =3 Y UapVi)VNas)» (4.29)

i=2 j=2
where V' IN(; ;) is the nodal volume. The relationship between the natural and formal inner products in
0
HN is

(U, V)n‘iq =WNU,V] (4.30)

(]
HN
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where N is the symmetric positive operator in the formal inner product,

[NU, V]HN = [U,NV]HN, [NU, U]HN > 0, (4.31)
and
WU)g) = VNe)Uagys 6=2..,M=1; j=2,... . N—1. 4.32)
The inner product in HL is similar to the inner product for space HS:
M—1 N—1
—» —» — —>
By =22 2 (A, B)j\VCinpg, (4.33)

i=1 j=I

where (_X §)i+l /2,j+1/2 approximates the dot product of two vectors at the cell (i +1/2,5 + 1/2).
In HL, the vectors are represented by orthogonal projections to the directions of the edges of the
3-D cells (see Fig. 6). If the axes £ and n form a nonorthogonal basis, the components of the vector

W in this basis are the orthogonal projections W L{ and W Ly of W onto the directions of coordinate

axes. If A = (ALE, ALn) and B = (BLE, BLn), then the dot product is

ALEBLE+ ALnBLny — (ALEBLn + ALnBLE) cos <p
sin? ¢

— —

(A, B) =

where ¢ is the angle between these axes (see Fig. 6). From a formal point of view, the only difference
between this formula and the one for the surface components, (see Eq. (4.8)), is the minus sign before
the third term. This difference can be easily understood if we take into account that basis vectors of
one nonorthogonal local system are perpendicular to another.

Formula (4.34) is used to approximate the dot product in a cell:

1 V(i+1/2,j+1/2)

. Z (i+k,j+1)
(i+1/2,5+1/2) — . (i+1/2,j+1/2)
k=0 Sin? Plitk,j+i)

(4.34)

(4, B)

X [ALE(41/2,540) BLE v 1/2,541) + ALNG 4k j+1/2)BLNGik j+1/2)

— (=" ALEG 1 /2,540 BL0Gk j11/2)

+ AL sk j+1/2)BLE(i41/2,5+1))CO8 sogi,lg/jif; 1/ 2)] , (4.35)

where V((:',:’éig; 1/2) represents the same weights as for space HS.

The operator £, which connects the formal and natural inner products in H£ (similar to operator
S for space HS), can be written in block form as

s Ly Lp AL¢ LtALE + LipALn
LA = = . (4.36)
L21 L22 AL’I’] L21 ALf + L22AL’I]
This operator is symmetric and positive in the formal inner product:
(A, B),,.=[4,LB],, [t4, 4], >0 (4.37)

A comparison of formal and natural inner products gives the following:
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(ij+1)

(i-1j)

(ij-1)
O —ALE 0O - AIn

Fig. 8. Stencil for the operator DIV = —GRAD™ : HL — HN.

1 (1—-k/2,j+1/2)

_ (4,5+1)
(LitALE) i41/2,5) = ( > i (i_k/z,j+1/2)>AL€(i+l/2,j>’
kil =0 S P (5, 541)

1 ((i—kl/)2,j+l/2)
_ k4l g+ (i—k/2,j+1/2)
(L2 ALn)erjzg) = = D (DM —Em cospu ™ AL k12,
k,1=0 SIR™ D, j+1)
| 125472 (4.38)
_ k+l i+lJ (i+1/2,5—k/2)
(Lot ALn) G gy = = Y (=)= > D S Panyy ALk
k,1=0 SN D (iv15)

1 (i+1/2,5—k/2)

_ (i+L,4)
(LZZAL"'])(i,j+1/2) = ( Z 2 (i+1/2,j_k/2))ALn(i,j"‘l/z)'
kyd=0 ST 0514 4y

The operators L;; and Ly, are diagonal, and the stencils for the operators Li; and Lj; (in 2-D) are
the same as for the operators S, and Sp; (see Fig. 7).

4.2.1. Construction of operator DIV
The DIV : HL — HN operator is defined as the negative adjoint of GRAD:HN — HL.,

DIV & _GRAD". (4.39)
Using the connections between formal and natural inner products,
DIV =-N"".GRAD' - L, (4.40)

we see that DIV is local because AV is diagonal and that both GRAD' and £ are local. It is easy to
see that

—GRAD' 4 = (6:ALE);; + (6, ALn)i . (4.41)

The stencil for DIV at the interior nodes is obtained by combining this formula with the stencil for
operators Li;, L1z, Ly; and Ly; (shown in Fig. 8).
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4.3. Operator CURL

Operator curl satisfies the integral identity (1.2):

/ (curl 4, B) dV = / (4, curl B)dv — ]{ (A, 7 x B)ds. (4.42)
14 \'4 A%

J—
In the subspace of vectors A, where the surface integral on the right-hand side vanishes, curl is
self-adjoint,

curl = curl*, (4.43)
in the inner product
— — _— —
(AaB)f/(A,B)dV- (4.44)
v

In the discrete case, for 1—4) € HL, vector CURL 1—4) € HS, and we define CURL : HS — HL as
adjoint to CURL : HL — HS by

def

CURL = CURL*. (4.45)
That is,
— — —_F e —>
(CURL 4, B), s — (A,CURL B), . =0. (4.46)

We can express CURL as
CURL ="' -CURL'-S (4.47)
and see that, although CURL is a local operator, the operator CURL is nonlocal.
We can determine C — CURL B by solving the system of linear equations
— —
£LC =CURL'-SB, (4.48)
with local operators £ and CURL! - S.

5. Structure of discrete operators

In this section we introduce primitive differencing and metric operators and present expressions for
GRAD, DIV, CURL; GRAD, DIV, and CURL in terms of these primitive operators. This repre-
sentation is useful for investigating the properties of discrete divergence, gradient, and curl, and, in
particular, for proving the discrete analogs of the differential operator theorems of vector analysis.

The primitive metric operators correspond to the multiplication of scalars by length, area, or volume
and can be defined as the following diagonal operators:
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(LED)iv1/2,5 = iv1/2,5Uit1/2,55
(Lm )zj+l/2 = l"7i,j+1/2Ui,j+1/27
(L¢U )i,y = 16,3Ui

(SEU)i 1172 = S&ijr172Us j41/2s

(81U )ix1/25 = SMiz172,iUit1/2,55
(SCU)ix172,41/2 = SCit1/2,54+172Uik1/2,541/25
(Ve( ) is1/250172 = VCinipg12Uir1y2541/2,
(VNU)),,; = VNiUis.

The formal discrete gradient, GRAD :HN — HL, is

be
GRAD = . (5.1
677

The natural discrete gradient, GRAD:HN — HL, is
Lg!

GRAD =
0

0
-GRAD. (5.2)
Lp~!

The formal discrete divergence, DIV :HS — HC, is
DIV = (b¢,6n) - (5.3)
The natural discrete divergence, DIV : HS — HC, is

DIV = (VO)~'. DIV (S€ 0 ) . (5.4)
0 Sn
The formal discrete curl, CURL : HL — HS, is
0 0 ¢
CURL=] 0 0 —& |- (5.5)
—by 6 O

The natural discrete curl, CURL: HL — HS, is
Setoo 0 LE 0 0O
CURL = 0 Sp! o0 -CURL-| 0 Ln 0 |- (5.6)
0 0 5S¢t 0 0 LC
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The formal adjoint to the formal discrete divergence, GRAD = —DIV':HC — HS, is

[ %
GRAD = : (5.7
677

The adjoint to the natural discrete divergence, GRAD = —-DIV*:HC — HS, is

__(se o) ___
GRAD =57 -GRAD. (5.8)
0 Spy
The formal adjoint to the formal discrete gradient, DTV = —GRAD' : HL — HN, is
DIV = (b¢,6n), (5.9
The adjoint to the natural discrete gradient, DIV = —GRAD* : H£ — HN, is
— _ Lt oo
DIV = (VM) .DIV. L. (5.10)
0 Lnp!

The formal adjoint to the formal discrete curl, CURL = CURL : HS — HL, is

0 0 -6
CURC=|0 o & |- (5.11)
by ~b¢ O

The adjoint to the natural discrete curl, CURL = CURL*: HS — HS, is

LE 0 O st 0 0
CORL=C,"'-|10 Lp 0 |-CURL-| 0o sSy!' o |- S (5.12)
0 0 I 0 0 S¢!

6. Discrete operator theorems
6.1. Theorems for formal operators

We define the formal discrete volume, surface, and line integrals, to be the same as given in [6] if
the volumes, areas, and lengths are set equal to one.
In HC, the formal volume integral is

TEU) = Uiy, (6.1)

cells
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where V is the union of the primitive (3, j) cells (in the case of formal integrals, this volume is defined
by set of indices (%, j) over which summation is made).
In ‘HS, the formal surface integral is

IS = > WSirip+ Y WSni+ > WSCiiiyaisi 6.2)
&-faces n-faces ¢-faces
where S is the union of primitive cell faces.
We define the formal discrete line integral for A € HL as
TL(A) = 3 AL&pg+ Y. ALngip, (6.3)
£-edges n-edges

where L is the set of edges that determine the discrete path.

The formal operators GRAD, DIV and CURL coincide with operators GRAD, DIV and CURL,
respectively, for the special grid in which all volumes of the cells, areas of the faces, and lengths of
the edges are equal to one, and therefore all matrices relating to geometry are the identity. Therefore
all theorems proved in [6] are valid for formal operators and formal integrals. In particular, we will
use the following Theorems 1 and 2.

— — —
Theorem 1. DIV A =0 ifand only if A = CURL B.

Theorem 2. CURL A = 0 if and only if A = GRAD .

We will now prove the corresponding theorems for the adjoint operators:

Theorem 3. DIV A = 0 if and only if A = CURL B, where A € HL and B € HS.

—s 0
Theorem 4. CURL A =0 if and only if A= GRAD p, where A € HS and » €HC.

The proofs are simplified by noting that for the formal operators we need only consider a grid with
unit mesh size. To make the proof more descriptive, we will introduce the dual grid by shifting a
unit grid by a half mesh cell (see Fig. 9). The nodes of the original grid are the centers of cells of
dual grid, and vice versa. That is, HC° ~ HNY, where superscript “o” refers to the original grid, and
superscript “d” refers to the dual grid. Note that, the normal components of vectors on the original
grid are tangential to the dual grid and vice versa.

The relationships between these two grids and the simplified geometry reduce the proof for the
adjoint operators to a simple modification of the proof for the formal operators (with an obvious
change in the range of indices).

6.2. CURLGRAD =0

To prove that the analog of the identity curlgrad v = 0 holds for the adjoint discrete operators, we
note that for any vector X, the definition of GRAD implies

(GRADU, A),,; + (UDIVA),. =0. (6.4)
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WSE = WLT

S
7

i1

WLio= wsn 4

Original Grid . Dual Grid

Fig. 9. The original unit grid (solid lines) is shifted by half a mesh to create the dual grid (dotted lines). Centers of the
cells of the original grid are nodes of the dual grid and vice versa. Vectors that are normal to faces of the original grid are
tangential to the edges of the dual grid and vice versa.

If we take Z = CURL Tf, then
— —
(GRAD U, CURL B)Hs + (U, DIVCURL B )HC = 0. (6.5)

Because DIV CURL _ﬁ = 0 (see [6]) for any vector § the second term in Eq. (6.5) is zero, and

(GRAD U, CURL E))’HS = 0 for any U and B. Using the definition of the adjoint operator, we can
rewrite Eq. (6.5) as

CURLGRADU, B),,. = 0. (6.6)
HL

This equation holds for any B¢ HL; hence,
CURL GRADU = 0. 6.7

6.3. DIVCURL =0
Similarly, using the identity
— — P — 4
(CURL A,B)HS»—(A,CURL B)HE:O (6.8)
and taking A = GRAD ¢, where ¢ € HN, it follows that

DIVCURL B = 0. (6.9)
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_ > — ——
6.4. IfDIV A =0, then A = CURL

The condition DIV x—‘f = 0, where Z € HL, can be written as

o (LETT 0O —
(VM. DIV | LA=o (6.10)
0 Ln~

This equation is equivalent to

—_

DIV A =0, (6.11)
where

— (LT 0 -

A = 1 L A. 6.12)

0 Lo
Using Theorem 3 it follows that

— — —

A" =CURLB', where B’ € HS, (6.13)
and therefore

— LE 0y _____ —

A=t CURLB'. (6.14)

0 Ln

R
If we define the vector B as

set 0 0
BE=| o sy' o |- sF, (6.15)
0 0 5S¢t
then
LE 0 0 st 0
A=c'| o0 Ly o |-CURC-| 0 Ssy' o |-SBE=CURLB, (616
0 0 ILC 0 0 S¢!

e —
and the theorem follows. Note that the transformation between vector B and B’ is one-to-one because
matrix S and the area matrix are positive definite.



J.M. Hyman, M. Shashkov / Applied Numerical Mathematics 25 (1997) 413—442

6.5. fCURL A =0, then A = GRAD

The condition CURL j‘f = (0, where _X € HS, can be written as

LE 0 0O Se7t 0 0
£Vl o Lp o |-CURC-| o sSy' o |-SA4=
0 0 I o o0 S¢!

Because matrix £ and the length matrix are positive definite, Eq. (6.17) is equivalent to

S0 0
CURL-{ o sp' o0 |-SA=
0 0 s¢!

Y
We define vector A’ as

Se~t 0 0
Z}) = 0 S'I]—l 0 ) S Z?
0 0 s¢!

and rewrite Eq. (6.18) in the form
- —
CURL A =0.
Using Theorem 4 and Eq. (6.20), we can conclude that
.—) O
A" = GRAD p, where ¢ €HC,
and the result below follows directly from Egs. (6.19) and (5.2):
S 0 0
A=8"|0 sy 0 |ORADy=GRAD.

0 0 S¢

7. Conclusion and discussion

The natural discrete operators constructed in [6],
DIV:HS — HC, GRAD :HN — HL, CURL: - HL — HS

can be combined only to construct the trivial operators:

435

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

7.1)
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DIV CURL : HL — HC, DIV CURL = 0, (7.2)
CURLGRAD:HN - HS,  CURLGRAD = 0. (7.3)

In this paper we used SOM to construct the operators

DIV:HL — HN, GRAD:HC —»MS, CURL:HS — HL. (7.4)
By construction

DIV = —-GRAD*, GRAD =-DIV*,  CURL = CURL". (7.5)

We then proved that discrete versions of the differential operator theorems hold for these derived adjoint
operators as well as for the natural operators DIV, GRAD and CURL. Namely, we have proved the

discrete theorems of vector analysis including Gauss’ theorem; the theorem that div A = 0 if and
only if A = curl f; and the theorem that curl A = 0 if and only if A= grad .

The adjoint operators have different domains and ranges and can combined with natural operators
to form the nontrivial second-order operators:

DIVGRAD : HC — HC, DIV GRAD :HN — HN, (7.6)
CURLCURL:HS —HS, CURLCURL:HL — HL, (1.7
GRADDIV: HL — HL, GRADDIV: HS — HS. (7.8)

We also can construct two discrete analogs of the vector-Laplacian

— — —
A A =graddiv A — curlcurl A4:
AfF:ML — HL, Af = GRADDIV — CURL CURL

and
AP :HS — HS, AY = GRADDIV — CURL CURL.

One of the most important theorems of vector analysis is the theorem of orthogonal decomposition
of the vector field; that is, any vector can be represented in the following form:

— —
A =grady¢ + curl B. (7.9)

This theorem plays a very important role in many theoretical considerations in continuous case. The
main goal of our next paper [7] is to prove discrete analogs of the theorem for vectors from spaces

‘HL and ‘HS. Namely, we will prove that any vector A € MS can be presented as

A =GRADy + CURL B, (7.10)
where ¢ € HC and B e ‘HL, and similarly that any vector A € ML can be presented as

A = GRAD ¢ + CURL B, (7.11)

where ¢ € HN and B e HS.
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i

Fig. A.l. Rectangular grid.
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Appendix A. Formulas for discrete operators on a rectangular grid

In this appendix we present formulas for operators DIV, GRAD and CURL on a nonuniform
rectangular grid with spatial steps hX; and hY; (see Fig. A.1).

A.l. Operator DIV

Forall cells (i +1/2,j+1/2), wherei =1,...,M—landj=1,...,N—1, formulas for operator
DIV are

_ (6EWS§)i+1/2,j+1/2 (5"WST')z‘+I/2,j+1/2
i+1/2,j+1/2 hX; th ’

The stencil for operator DIV is shown in Fig. A.2.

(DIV W)

(A.D)

A.2. Operator GRAD

Vector G = GRADU has two components, G = (GLE,GLn), which are defined on the corre-
sponding edges.
For 1£;11)2,;) edges, where i=1,...,M —1and j=1,...,N, formulas for GL{;, ; are

(6£U)i+1/2,j

e (A2)

GLE 1125 =
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LAY
L. i+172,j+1
(ij+1) )¢ (i+1j+1)

S LAY
§1'4'4-1/2 + q gm.jua
(DIV .ﬁ)um,,un

WS i
(if) - (i+1j)

O-— WSg, O —WSn, 4 — (DIV W), 15,10

Fig. A.2. Stencil for operator DIV.

{ig+l) (i+dj+l)  (ijel) (ivlj+1)

( ) GL“ ijein2

GL&.‘.m.;
(ig) (i+1j) (ij) (ielj)
o- v , O-GLE e—vu , 0 -GN

Fig. A.3. Stencil for operator GRAD.

For In(; j4+1/2) edges, where i =1,..., M and j = 1,..., N — 1, formulas for GLn; ;/, are
(6p U)ij+12

hY; '
The stencil for operator GRAD is shown in Fig. A.3.

GLn; jp12 = (A.3)

A.3. Operator CURL

Vector R = CURL B has three components, R = (RS¢, RSn, RS(), which are defined on
corresponding surfaces.

For faces S§(; jy1/2), where i =1,... .M and j =1,... , N — 1, formulas for operator RSE; ;1,2
are

(6pBLC); j+1/2
RS¢; ;112 = TRy, (A4)
For faces S7(;i11/2,j), where i = 1,...,M —1and j = 1,..., N, formulas for operator R57;.12,;
are

(6¢ BLQ)i+1/2,5
Rsn,i+1/2,j = ———h—)(l——'? (A.S)
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() (isljel)  (ijel) (ieljsl)
RSE, .2
Rsrlfoldj
Wy N N
(%) (ivlg) (i) wij)
+ - BLL, O - RSE +-BLL, O - RSM
BL )
(ij+1) f""’*" (i+lj+1)
~
RS
s, P + ghmm(ﬁ BN, yeiz
L+ /2
(%) BLE (1))

i+12j

© —BLE, O-BLN, + — RS{

Fig. A.4. Stencil for operator CURL.

For faces SC(y1/2,j4+1/2), where i = 1,...,M — 1 and j = 1,...,N — 1, formulas for operator
RSGiy1/2,5+1/2 are

(6¢BLn)iv1/2,5+172  (6qBLE)iv1/254172
RSCir1/2412 = ’ - ’ . (A.6)
/2541 hX; hY;

The stencil for operator CURL is shown in Fig. A.4.

A.4. Operator GRAD

Vector GRAD U has two components, (GSE, GSn), which are defined on corresponding faces.

For internal faces S¢(; j11/2), where i =2,...,M — 1l and j=1,...,N — 1, formulas are

(6eU)i g+12

> = : . A7

GSCij+ia 0.5(hX;_| + hX;) (A7)

For internal faces S7(;11/2 ), where i =1,...,M —1and j =2,...,N — 1, formulas are

(65U )it1/2,5

. = g A.8

GST]1+1/2,J Os(h}/J—l + hY;) ( )

On the boundary faces, components of discrete gradient are defined by one-sides differences, for

example, fori =1and j =1,...,N — 1 formulas are
Usszi412 — Ul i
GS&1 5412 = 2 0./5th tasiEy (A.9)
similar, for j =land i =1,..., M — 1 formulas are

Ui 12,32—Ui 1/2,1
GSniajrr = — T (A.10)
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+
+Q +
(i) -
(&) +
@ + +
L
oy el &

O—GS; ) — GM; + — U
Fig. A.5. Stencil for operator GRAD.

0 —weg; O — wim; e — (pv W)

Fig. A.6. Stencil for operator DIV.

On other boundaries formulas are similar.
The stencil for operator GRAD is shown in Fig. A.S.

A.5. Operator DIV
For nodes (%,j), where i =2,...,M — 1 and j =2,..., N — 1, formulas for DIV are

. (6WLE), (6,W Ln)i,;
PIVW),,; = 0.5(hX; +hX;—1)  0.5(hY; +hY;—1)

(A.11)

The stencil for operator DIV is shown in Fig. A.6.
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(ij+1}

(i+ 1))

W)

Y

+ ¢+

<

()

+ — B, O — RLE O — RIM,
(ij+1)

&~
(1) é w_} fisLy)

\'4

o~

{Lj-1)
O — BsE, ¢ —BsM, + — RLE

Fig. A.7. Stencil for operator CURL.

A.6. Operator CURL

Vector B = CURL B has three components—ﬁ = (RL&,RLn, RLC), which are defined on
corresponding surfaces.

For edges 1§(;1/2,5), where i =1,..., M — 1 and j =1,..., N, formulas for operator RL&; 12,5
are

(69BSC)it1/2,
05(hY;_; + hY;)

For edges In; j4+1/2), where i =1,...,M and j = 1,..., N — 1, formulas for operator RL1); 1/, are

_ (8BS5Q)ij+1/2
0.5(hX;—; + hX;) '
For edges I(; j), where t =1,.... M —land j=1,... , N — 1, formulas for operator RL(; ; are
(6eBSm)iy (64 BSE)i,
0.5(hX;_1 + hX;) 05(hYj_; +hY;)
The stencil for operator CURL is shown in Fig. A.7.

RLi 125 =

(A.12)

RLn; j112 = (A.13)

RL(; ; =

(A.14)
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